Thickness of a metallic film, in addition to its roughness, plays a significant role in SERS activity

نویسندگان

  • Changwon Lee
  • Christopher S. Robertson
  • An H. Nguyen
  • Mehmet Kahraman
  • Sebastian Wachsmann-Hogiu
چکیده

In this paper we evaluate the effect of roughness and thickness of silver film substrates, fabricated on glass and polydimethylsiloxane (PDMS) templates, on surface-enhanced Raman Spectroscopy (SERS) activity. While the silver substrates obtained on glass templates exhibit nm-scale roughness, the silver substrates on PDMS templates show larger roughness, on the order of 10 s of nm. These roughness values do not change significantly with the thickness of the silver film. The SERS intensities of 4-aminothiophenol (ATP) deposited on these substrates strongly depend on both roughness and thickness, with more significant contribution from the roughness on thinner films. FEM simulations of the electric field intensities on surfaces of different thicknesses for rough and flat surfaces suggest higher localized plamons on thinner, rough surfaces. This study indicates that, besides roughness, the thickness of the metallic layer plays a significant role in the SERS activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Platinum Layer and Aluminizing Process on Surface Roughness of Coated Superalloy by Pt-Al

In this study, the effect of platinum-aluminide coating parameters on surface roughness of nickel-based superalloy Rene®80 was evaluated. For this purpose, different thicknesses of Pt-layer (2, 4, 6 and 8µm) were plated on the Samples. Then diffusion aluminide coating in two types, high tempeature-low activity and low temperature-high activity was performed. The results of structural investigat...

متن کامل

اندازه‌گیری ضخامت و زبری لایه‌های نانومتری با استفاده از نمودار شدت فریزهای تداخلی

In the standard optical interference fringes approach, by measuring shift of the interference fringes due to step edge of thin film on substrate, thickness of the layer has already been measured. In order to improve the measurement precision of this popular method, the interference fringes intensity curve was extracted and analyzed before and after the step preparation. By this method, one can ...

متن کامل

Growth, Characterization of Cu Nanoparticles Thin Film by Nd: YAG Laser Pulses Deposition

We report the growth and characterization of Cu nanoparticles thin film of on glass substrate by pulse laser deposition method. The Cu thin film prepared with different energy 50, 60, 70, and 80 mJ. The energy effect on the morphological, structural and optical properties were studied by AFM, XRD and UV-Visible spectrophotometer. Surface topography studied by atomic force microscopy revealed na...

متن کامل

Simple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction

Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...

متن کامل

Simple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction

Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015